```
ST MARGARET'S COLLIER STREET CE SCHOOL
```


Review:	October 2021
Agreed by Governors:	November 2021
Next Review:	April 2024

Year 1 Addition			
Objective and Strategy	Concrete	Pictorial	Abstract
Combing two parts to make a part-whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.		$4+3=7$ 5 3 $10=6+4$ Use the part whole model diagram as shown to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10 (Vital small step for column addition later)	Start with the bigger number and use the smaller number to make 10 . Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?

Represent and use number bonds and subtraction facts to 20	2 more than 5		Emphasis on mathematical vocabulary - 3 more than 4 is equal to 7 - 3 more than 4 is 7 - 7 is 3 more than 4
Year 2 Addition			
Objective and Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten		3 tens + 5 tens $=$ \qquad tens $30+50=$ \qquad Use representations for base ten	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\ldots=60 \end{aligned}$ Vary the position of the equals sign and missing number problems
Use known number facts Part whole model	Explore ways of making numbers up to 20	$\begin{gathered} 20 \\ \square+\square \\ \square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	$\begin{aligned} & +1=16 \\ & 1+\ldots=16 \end{aligned}$ $\begin{aligned} & 16-1= \\ & 16-\ldots=1 \end{aligned}$
Using known facts		Draw representations of H, T and O	$\begin{array}{\|l} \hline 3+4=7 \\ \text { Leads to } 30+40=70 \\ \text { Leads to } 300+400=700 \end{array}$

Bar model	$3+4=7$	$7+3=10$	23 $23+2$	24		
Add a two-digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$\begin{aligned} & 17+5 \\ & \text { Explor } \\ & 17+5= \\ & 5+17 \\ & 22-17 \\ & 22-5=1 \end{aligned}$	re	ac	
Add a two-digit number and tens	$\begin{aligned} & 25+10=35 \end{aligned}$ Explore the ones digit did not change		$\begin{aligned} & 27+ \\ & 27+ \\ & 27+ \end{aligned}$	$\begin{aligned} & 7 \\ & 47 \\ & =57 \end{aligned}$		
Add two twodigit numbers	Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole model		$\begin{aligned} & =60 \\ & =12 \\ & =72 \end{aligned}$		

Add three onedigit numbers	Combine to make 10 first if possible, or bridge ten then add third digit	Regroup and draw representation. $\operatorname{lin}^{2}+8^{2}+8^{2}=15$	$\begin{aligned} (4+7+6 & =10+7 \\ 10 & =17 \end{aligned}$ Combine to make 10 first if possible, or bridge ten then add third digit
Year 3 Addition			
Objective and Strategy	Concrete	Pictorial	Abstract
Column addition - no exchanging Add two or three 2 or 3digit numbers	Add together the ones first, then the tens. Move to using place value counters	Move to drawing the counters using a tens and ones frame.	$\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$ Add the ones first, then the tens then the hundred.

Column addition with exchanging	Exchange ten ones for a ten. Model using place value counters or numicon. $46+27=73$	34 +1 7 Draw a representation of the grid to support understanding, carrying the ten underneath the line after exchanging	$\frac{500+30+6}{80+5} 5$Start by partitioning the numbers before formal column to show the exchange. 536 +85 $\frac{621}{11}$
Estimate the answers questions and use inverse operations to check answers	Estimating $98+17=$? $100+20=120$	Use a number line to illustrate estimation	Building up known facts and using them to illustract the inverse and to check answers: $\begin{aligned} & 98+17=115 \\ & 17+98=115 \end{aligned}$ $\begin{aligned} & 115-98=17 \\ & 115-17=98 \end{aligned}$

Year 4-6 Addition			
Objective and Strategy	Concrete	Pictorial	Abstract
Year 4 - add numbers with up to fourdigits	Continue to use dienes and place value counters to add, exchanging ten ones for a ten, ten tens for a hundred and ten hundreds for a thousand	100 s 10 s Is 00 0000 500 000 0000 0088 00 6 1 1 Draw representation using place value grid	Continue to exchange and carry forward tens and hundreds Relate to money and measures
Year 5 -add numbers with more than four-digits Add decimal with two decimal places, including money	Introduce decimal place value counters and model exchange for addition	$2.37+81.79$ tens ones tents hundredts 00 000 0000 00000 0 000 00 000 000 00000	$\begin{array}{lllll} \hline 72.8 & & & \\ +54.6 \\ \hline 127.4 & & & \\ \hline 11 & & € 2 & 3 & 59 \\ \hline & & \ldots 7 & 5 & \\ & & € 3 & \cdot & 1 \\ \hline & & 1 & 1 \\ \hline \end{array}$

Year 6 - add	As Year 5	As Year 5		
several			81,059	
numbers of			3.668	
increasing			15,301 +20551	
increasing			$+20,551$	
complexity			120,579	
Including				$23 \cdot 361$ $9 \cdot 080$
adding money,			place holders.	$59 \cdot 770$
measure,				$+\quad 1 \cdot 300$
decimals with				$\begin{array}{ll}9 & 3 \\ 2 & 1\end{array}$
different				
number of				
decimal points				

Vocabulary

Key vocabulary : sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'

Year 1 Subtraction			
Objective and Strategy	Concrete	Pictorial	Abstract
Take away ones	Use physical objects, counters, cubes, etc to show how objects can be taken away	Cross out drawn objects to show what has been taken away $15-3=12$	$\begin{aligned} & 9-4=5 \\ & 17-8=9 \end{aligned}$
Counting back	Move objects away from the group, counting backwards Move the beads along the bead string as you count backwards \square	Count backwards in ones using a number line	Put 14 in your head, count back 5 . What number are you at?
Find the difference	Compare objects and amounts	Count on using a number line to find the difference	Sarah has 11 apples and her brother has 5. How many more does Sarah have than her brother?

| Represent and
 use number
 bonds and
 related
 subtraction
 facts within 20 | If 10 is the whole and 6 is one of
 the parts, what is the other part? |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Part whole
 model | $10-6=4$ |
| mart whole model to | |
| model the inverse. | |

Year 2 Subtraction			
Objective and Strategy	Concrete	Pictorial	Abstract
Exchange a ten into ten ones	Use place value chart to show how to exchange a ten for 10 ones		$20-4=16$
Partition to subtract without exchanging	$34-13=21$ Use Dienes to show how to partition the number when subtracting	Draw representations of Dienes and cross off $43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead string to model counting to the next ten and the rest	 Use a number line to count on to the next ten and then the rest	$93-76=17$

Year 3 Subtraction			
Objective and Strategy	Concrete	Pictorial	Abstract
Subtract numbers mentally, including: - Three digit number + ones - Three digit number + tens - Three digit number + hundreds	erpeepetee eseperpee e7 7 =		$\begin{gathered} 678=?-1 \\ 688-10=? \\ 678=?-100 \end{gathered}$ Vary the position of the answers and questions. Expose children to missing number questions and vary the missing part of the calculation.
Column subtraction without exchanging	$47-32$ Use Dienes or Numicon to model	Draw representations to support understanding	Intermediate step may be needed to lead to clear subtraction understanding $\begin{array}{cc} 47-24=23 & 32 \\ -\frac{20+7}{20+4} & -12 \\ \hline 20+3 & 20 \end{array}$

Year 4-6 Addition			
Objective and Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to fourdigits Introduce decimal subtraction through context of money	 Model process of exchange using Numicon, Dienes and then move to place value counters	Draw place value counters and show exchange - see Year 3	$\begin{array}{r} 2^{6} x^{\prime} 54 \\ -1562 \\ \hline 192 \end{array}$
Year 5 - subtract with at least fourdigits, including money and measures Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Draw place value counters and show exchange - see Year 3	

(2) Year 1 Multiplication			
Objective and Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together
Counting in multiples		Make representations to show counting in multiples $\begin{array}{llllllllll}2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20\end{array}$	Count in multiples of a number aloud Write sequences with multiples of numbers $2,4,6,8,10$ $5,10,15,20,25,30$
Making equal groups and counting the total	Use manipulatives to create equal groups	Draw and male representations	$2 \times 4=8$

Repeated addition	Use pictures including number lines to solve problems	Write addition sentences to describe objects and pictures	
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots of 5,3 lots of 2 etc.	Draw representations of arrays to show understanding	$3 \times 2=6$

Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutatively	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Using the inverse This should be taught alongside division, so pupils learn how they work alongside each other			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentence

This policy has been adapted from the White Rose Maths Hub Calculation Policy with further material added.

Year 4			
Objective and Strategy	Concrete	Pictorial	Abstract
Grid method recap from Year 3 for twodigits \times onedigit Move to multiplying three-digit numbers by one-digit	Use place value counters to show how we are finding groups of a number. We are multipltipying by 4 so we need 4 rows Fill each row with 126 Add up each column making any exchanges needed	Represent work with place value counters in a way that they understand. Draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking	Start with multiplying by one-digit numbers and showing the clear addition alongside the grid $210+35=245$

Year 5 and $6 \quad$ Multiplication			
Objective and Strategy	Concrete	Pictorial	Abstract
Column multiplication for 3 and 4 digit $\times 1$ digit	 It is important at this stage that they always multiply the ones first. Use place value counters to support understanding. This initially is done with no exchanging $321 \times 2=642$	x 300 20 7 4 1200 80 28	
Column multiplication	Manipulatives may still be used with the corresponding long multiplication modelled alongside	Continue to use bar models to support problem solving	

This policy has been adapted from the White Rose Maths Hub Calculation Policy with further material added.

Year 6 Multiplication			Abstract
Objective and Strategy	Concrete	Pictorial	
Multiplying decimals up to 2 decimal places by a single digit			Remind children that the single digit belongs in the ones column. Line up the deciaml point in the question and answer. Number of decimal places in the question is reflected in the answer.
Vocabulary			

Year 1 Division			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as sharing		Pictures or shapes used to share quantities 8 shared between 2 is 4 . Sharing: 12 shared between 3 is 4	8 shared between 2 is 4 .

	I have 10 cubes. Can you share them equally into 2 groups?		
Year 2 Division			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as sharing	Joe has 10 cubes. Can you share them into 2 equal groups?	Representing sharing pictorially. Bar models used to share and to support understanding of equal parts.	$6 \div 2=3$ What's the calculation?
Division as repeated subtraction	Understanding division as repeated		Abstract numberline

	subtraction and groupings		
Division within arrays	Link division to multiplication using an array. Think about the number sentences that can be created. $\begin{aligned} & 5 \times 2=10 \\ & 2 \times 5=10 \\ & 10 \div 2=5 \\ & 10 \div 5=2 \end{aligned}$	Draw and array and use lines to split the array into groups. Which multiplication and division sentences can be made?	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 3 \times 4=12 \\ & 4 \times 3=12 \\ & 12 \div 3=4 \\ & 12 \div 4=3 \end{aligned}$
Year 3-4 Division			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to support understanding.	$\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 8 are in 24 ? $24 \div 8=$

	$28 \div 2=14$		
Division with arrays	Link division to multiplication using an array. Think about the number sentences that can be created. $\begin{aligned} & 4 \times 6=24 \\ & 6 \times 4=24 \\ & 24 \div 4=6 \\ & 24 \div 6=4 \end{aligned}$	Draw and array and use lines to split the array into groups. Which multiplication and division sentences can be made?	Find the inverse of multiplication and division facts by creating linking number sentences. $\begin{aligned} & 4 \times 6=24 \\ & 6 \times 4=24 \\ & 24 \div 4=6 \\ & 24 \div 6=4 \\ & 24=4 \times 6 \\ & 24=6 \times 4 \\ & 6=24 \div 4 \\ & 4=24 \div 6 \end{aligned}$
Division with remainders	Divide into equal groups. How many are left over? $14 \div 3=$	A pictorial representation of the practical resources used.	$13 \div 4=3$ remainder 1 Children should use their times table facts and also represented as repeated subtraction on a number line.

This policy has been adapted from the White Rose Maths Hub Calculation Policy with further material added.

Calculation Policy
 April 2021

Aims
The aims of the policy are to provide guidance on the steps needed when teaching the four main operations: addition, subtraction, division and multiplication; as well as provide guidance on mental maths expectations for each year group.

- To ensure consistency across the school
- To outline a consistent approach to progression
- Use assessment for learning to identify suitable next steps in calculation for groups of children
- The mathematical language used to describe each operation should be encouraged and displayed on learning walls
- Children will be taught each stage through variation of question type and context

